390 research outputs found

    The Real-World Issues in Access to Care

    Get PDF

    Quantitative Models of Protein Dynamics in Synaptic Plasticity: Analysis of Spatial and Stochastic Effects

    Get PDF
    Memory formation within neurons depends on complex protein signaling networks, which become dysregulated in neurological disorders such as Alzheimer’s disease. To characterize therapeutic strategies for these disorders, we require a better understanding of the how the protein interactions are regulated. Conventionally, protein interactions are studied by experimental techniques and complemented by computational models. However, most models are deterministic, limiting their biophysical accuracy. First, deterministic models exclude the stochastic effects necessitated by the small protein concentrations often observed within neurons. Second, deterministic models exclude the effects of spatial localizations on neuronal protein binding and activation. Third, many different models exclude an explicit representation of competition for binding to the essential protein calmodulin when multiple calmodulin-binding proteins are known to simultaneously coordinate the regulation of synaptic plasticity. Therefore, here we present a highly detailed model that explicitly accounts for stochastic effects, spatial localizations, and competitive binding, using the open source software MCell. Using our model, we compare against previous models and experimental data to analyze how spatial and stochastic effects determine the dynamics observed. These conclusions will be drawn from the concentrations of various neuronal protein activations and chemical modifications. In the future, our model may be used as a tool to identify and characterize therapeutic targets for neurological disorders

    Comparative Studies of Line and Continuum Positron Annihilation Radiation

    Get PDF
    Positron annihilation radiation from the Galaxy has been observed by the OSSE, SMM and TGRS instruments. Improved spectral modeling of OSSE observations has allowed studies of the distribution of both positron annihilation radiation components, the narrow line emission at 511 keV and the positronium continuum emission. The results derived for each individual annihilation component are then compared with each other. These comparisons reveal approximate agreement between the distribution of these two emissions. In certain regions of the sky (notably in the vicinity of the previously reported positive latitude enhancement), the distribution of the emissions differ. We discuss these differences and the methods currently being employed to understand whether the differences are physical or a systematic error in the present analysis.Comment: 5 pages, to appear in the proceedings of the Gamma 2001 Symposium (Baltimore, April 2001

    OSSE observations of galactic 511 keV annihilation radiation

    Get PDF
    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma-Ray Observatory has performed several observations of the galactic plane and galactic center region to measure the distribution of galactic 511 keV positron annihilation radiation. Preliminary analysis of data collected during the observation of the galactic center region over the period 13-24 Jun. 1991, indicates the presence of a 511 keV line and positronium continuum superimposed on a power-law continuum. The line of flux was found to be (2.7 +/- 0.5) x 10(exp -4) gamma/sq cm sec, with a positronium fraction of (0.9 +/- 0.2). The 3(sigma) upper limit to daily variations in the 511 keV line flux from the mean during the observation interval is 3 x 10(exp -4) gamma/sq cm sec. If all of the observed annihilation radiation is assumed to originate from the x-ray source 1E 1740.7-2942, the corresponding 511 keV line flux would be (3.0 +/- 0.6) x 10(exp -4) gamma/sq cm sec. The 3(sigma) upper limit for 511 keV line emission from the x-ray binary GX1+4 is 6 x 10(exp -4) gamma/sq cm sec. Results from the galactic plane observations at galactic longitudes of 25 degrees (16-21 Aug. 1991) and 339 degrees (6-11 Sep. 1991) suggest that the emission is concentrated near the galactic center. The observations and the preliminary results are described

    Hypernovae/GRB in the Galactic Center as possible sources of Galactic Positrons

    Full text link
    The observation of a strong and extended positron-electron line annihilation emission in the central regions of the Galaxy by INTEGRAL-SPI, consistent with the Galactic bulge geometry, without any counterpart in the gamma-ray range, neither at high energy nor in the 1809 keV 26^{26}Al decay line, is challenging. Leaving aside the geometrical question, we address the problem of the adequate positron sources, showing the potentiality of a new category of SN Ic, exemplified by SN2003dh, which is associated to a gamma-ray burst. This kind of supernova/hypernova/GRB event is interpreted as the result of a bipolar Wolf-Rayet explosion, which produces a large amount of 56^{56}Ni and ejects it at high velocity along the rotation axis. The bulk of positrons resulting from 56^{56}Co decay escapes in the surrounding medium due to the rapid thinning of the ejecta in the polar direction. We show that a rate of about 0.02 SN2003dh-like events per century in the central region of the Galaxy is sufficient to explain the positron flux detected by INTEGRAL-SPI. In order to explain this flux by SN Ia events alone, a rate of 0.5 per century is necessary, much higher than indicated by Galactic evolutionary models applied to the bulge. Further observations of late light curves of SNe Ia and SNe Ic in the bulge of spiral galaxies, together with 3D hydrodynamic calculations of anisotropic ejections of 56^{56}Ni in SN Ic/GRB events, will allow to estimate the separate contributions of SNe Ia and SNe Ic to positron injection.Comment: 7 pages, 0 figures, accepted for publication in Astrophysical Journal Letters, 2003 12 0

    OSSE spectral analysis techniques

    Get PDF
    Analysis of the spectra from the Oriented Scintillation Spectrometer Experiment (OSSE) is complicated because of the typically low signal to noise (approx. 0.1 percent) and the large background variability. The OSSE instrument was designed to address these difficulties by periodically offset-pointing the detectors from the source to perform background measurements. These background measurements are used to estimate the background during each of the source observations. The resulting background-subtracted spectra can then be accumulated and fitted for spectral lines and/or continua. Data selection based on various environmental parameters can be performed at various stages during the analysis procedure. In order to achieve the instrument's statistical sensitivity, however, it will be necessary for investigators to develop a detailed understanding of the instrument operation, data collection, and the background spectrum and its variability. A brief description of the major steps in the OSSE spectral analysis process is described, including a discussion of the OSSE background spectrum and examples of several observational strategies

    Operation and performance of the OSSE instrument

    Get PDF
    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Arthur Holly Compton Gamma Ray Observatory is described. An overview of the operation and control of the instrument is given, together with a discussion of typical observing strategies used with OSSE and basic data types produced by the instrument. Some performance measures for the instrument are presented that were obtained from pre-launch and in-flight data. These include observing statistics, continuum and line sensitivity, and detector effective area and gain stability

    BeppoSAX Observations of the Radio Galaxy Centaurus A

    Get PDF
    We present preliminary results from two observations of the radio galaxy Centaurus A performed by the BeppoSAX satellite. We did not detect any spectral variation of the nuclear continuum in spite of the long-term flux change (by a factor 1.3) between the two observations. At both epochs, the nuclear point-like emission was well fitted with a strongly absorbed power law with an exponential cutoff at high energies (E_cutoff>200 keV). We also observed a significant flux variation of the iron line between the two observations. The flux of the line and of the continuum changed in the opposite sense. The line is more intense at the first epoch, when the nuclear source was at the lower intensity level. The implied delay between the continuum and line variations strongly suggests that the cold material responsible for the iron line production is not located very near to the primary X-ray source. There is also evidence that the line profile changed between the two epochs, being broader and slightly blueshifted when the source was fainter. It is possible that the emission feature is a blend of cold and ionized iron lines produced in separate regions surrounding the nuclear source.Comment: 4 pages, 4 figures, accepted for publication in Advances in Space Research, proceedings of 32nd COSPAR Symposium (1998
    corecore